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Abstract

Lattice simulations currently present the only way to access non-per-
turbative data in strongly coupled theories from a first principle calcula-
tion. However, in supersymmetric theories this valuable tool is not avail-
able due to the technical sign problem. We are going to demonstrate that
in the case of glueball spectra a good quantitative estimate for the lightest
states of low spin can be obtained by means of the holographic approach.
We will review the results of the calculation in the singlet glueball sec-
tor of the N = 1 supersymmetric Klebanov-Strassler model. We come up
with a prediction of the spectrum of lightest glueballs in (large Nc) N = 1
supersymmetric Yang-Mills theory.

PACS number(s): 04.40.Nr, 04.70.Bw, 11.27.+d

1 Introduction

Although QCD glueballs have not been identified unambiguously from exper-
iment, their spectrum is believed to be known from the lattice calculation by
Morningstar and Peardon [1]. In the absence of experimental data one may
wonder whether the lattice prediction may be independently tested. As far as
the supersymmetric extensions of QCD are concerned even the lattice results are
absent due to the technical difficulties one faces extending the lattice methods
to fermions.
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At strong coupling our main systematic tool – perturbation theory – does not
apply. String theory offers another systematic tool for the analysis of strongly
coupled physics. This tool is based on a weak-strong coupling duality, which
is called holographic correspondence. In other words, string theory offers a
first principle method of switching from the expansion in λ, where λ is large
to an expansion in 1/λ. Essentially the idea is based on the observation of
the equivalence of two descriptions: of a quantum gravity (string theory) in a
special space and of a field (gauge) theory on the boundary of this space.

In this note we will review the application of the holographic method to the
calculation of the glueball spectrum in the N = 1 supersymmetric Yang-Mills
theory. For this purpose the holographic model of Klebanov and Strassler [2]
will be employed. We make predictions about the masses of low spin glueballs
(0 or 1). We also find that the available results, e.g. the ratios m1+−/m2++ and
m1−−/m2++ , are also consistent with the lattice results beyond our expectations.

The review is based on a series of works [3]-[7], in which the glueball spectrum
of the Klebanov-Strassler theory was studied. Some earlier works, see [8], an-
alyze the spectrum in the non-supersymmetric case. In the Klebanov-Strassler
setup some issues of the non-supersymmetric holographic calculation are re-
solved, such as extra degeneracy of the 2++ and 0++ states.

2 Klebanov-Strassler theory

Gravity solution The basic model of the holographic correspondence is the
duality suggested by Maldacena [9] between the N = 4 supersymmetric Yang-
Mills theory and type IIB string theory in 10d space AdS5 × S5. Although by
itself the N = 4 model is very deep and interesting, e.g. at high energies it
may qualitatively model QCD, it cannot serve to the purpose of describing the
physics of confinement.

As far as confinement is concerned it is also instructive to study N = 1
theories as their low-energy physics resembles that of QCD. One of the most
popular N = 1 holographic models is the one derived by Klebanov and Strassler
(KS) [2]. From the string theory point of view KS theory is the type IIB string
theory on AdS5 × T 1,1, where T 1,1 is topologically S3 × S2. In the low-energy
limit the string theory becomes the type IIB SUGRA, so that the KS theory is
represented by the following solution of the SUGRA equations (see e.g. [3]).

metric, ds2 = h−1/2ηµνdx
µdxν + h1/2ds26 , (1)

NS 3-form, H3 = dB2 = d (gsM dτ ∧ (fω12 + kω34)) , (2)

RR 3-form, F3 = M
(

g5 ∧ ω34 + d(Fω13)
)

, (3)

RR 5-form, F5 = (1 + ∗10)B2 ∧ F3 , (4)

while the dilaton Φ and the RR scalar C can be chosen to vanish. Here h is
called the warp-factor1, ηµν is the Minkowski metric, gs is the string coupling,

1Due to h the gravity lives in M1,3 × C6, where C6 is a 6d cone with the base T
1,1.
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M is a parameter, encoding the rank of the gauge group in the IR, ∗10 is the 10d
Hodge operator. The coefficients h, f , k and F are functions of the AdS5 radial
coordinate τ , which is related to the standard AdS coordinate r ∝ ǫ2/3eτ/3 (at
large r). Explicit expressions for these functions and the conifold metric ds26 can
be found in [2]. ǫ is the deformation parameter of the conifold – a dimensionful
parameter, related to the strong coupling scale Λ in the dual theory.

The above solution is written in terms of the 1- and 2-forms invariant under
the SU(2)× SU(2)-symmetry of T 1,1. These include

g5 , ω12 = g1 ∧ g2 , ω34 = g3 ∧ g4 , ω13 = g1 ∧ g3 + g2 ∧ g4 . (5)

The definition of the 1-forms {gi} is given by equation (4) in [2].
The geometry of the KS solution exhibits several features reminiscent of

QCD or N = 1 SYM. In the UV limit the solution is almost conformal up to
the logarithmic running of the gauge coupling. The geometry has an IR cutoff
(r ∼ ǫ2/3), which will later define the mass gap. One can also show that it also
exhibit the correct pattern of chiral (U(1)R) symmetry breaking.

Dual field theory Klebanov and Strassler have argued that the above gravity
solution describes the following “cascading” theory. Let us start in the UV from
an SU(N)×SU(N +M) N = 1 gauge theory with the matter sector consisting
of a pair of doublets A1,2 and B1,2 in the bifundamental representations of the
gauge group:

A1,2 ∈ (N,N +M) , B1,2 ∈ (N,N +M) . (6)

HereAi and Bi areN = 1 (chiral) superfields. One can also add a superpotential

W = λǫikǫjlTrAiBjAkBl . (7)

Notice that the D-term equation in such a theory gives precisely the algebraic
definition of the conifold.

As one runs the theory to the IR, the two couplings of the two gauge factors
will run in the opposite direction, and the theory will undergo a Seiberg-type
duality: SU(N)× SU(N +M)→ SU(N)× SU(N −M), to avoid the Landau
pole for one of the couplings. One can observe that upon the duality the theory
is similar to the original one, with the only difference in the rank of the gauge
group. Thus the story repeats itself and one discovers a “cascade” of Seiberg
dualities, which continues until one of the gauge factors disappears:

SU(M)←− SU(2M)× SU(M)←− . . .←−

←− SU(N)× SU(N −M)←− SU(N)× SU(N +M)←− . . . (8)

In the last step the theory becomes an N = 1 SU(M) gauge theory.
In the original paper [2] the expectation of Klebanov and Strassler was that

the IR fixed point is precisely the N = 1 SYM theory. However, it was under-
stood later that the IR theory is not precisely the same. The gravity background
also realizes spontaneous breaking of the baryon number symmetry, and mass-
less particles appear in the spectrum. As a result some massive mesons made
out of A and B fields do not decouple in the IR.
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3 Gravity fields and glueball operators

Particle spectrum The spectrum of particles of a theory can be extracted
from the poles of the 2-point correlation functions of the field theory operators.
Holography provides a prescription for the calculation of any correlator at strong
coupling:

〈Oi1 · · · Oin〉 =
δ(n)Sbulk

δϕ
(0)
i1
· · · δϕ

(0)
in

∣

∣

∣

∣

ϕ
(0)
i

=0

, (9)

where Sbulk is the classical gravity (bulk) action computed on the solutions to
the gravity (bulk) field perturbations around the background solution with the
following boundary conditions. The asymptotic values of the bulk fields are the
sources of the field theory operators:

δϕi(r, x
µ|ϕ(0)) ←→ δL =

∫

d4xϕ
(0)
i Oi , (10)

where δϕi is a collective notation for the fluctuations of the bulk fields and ϕ
(0)
i

is their value on the boundary r →∞.
Boundary condition (10) sets a correspondence between the field theory oper-

ators and the gravity (bulk) fields. However the classical gravity approximation
corresponds to the low-energy limit, which implies that higher spin operators,
with large number of derivatives, are suppressed in the holographic considera-
tion. In particular, only the states with the spin less than 2 can be derived in
the lowest holographic approximation, with the exception of the spin 2 state
related to the energy-momentum tensor operator.

Correspondence also establishes a relation between the mass of the state in
the bulk and dimension of the dual operator. For the scalar field in the bulk

∆ = 2 +
√

4 +m2
5R

2 , (11)

where m5 is the eigenvalue of the Laplace-Beltrami operator on T 1,1, which
equals the mass of the scalar in the reduced 5d equations. For vectors and
tensors one can find the mass-dimension relation in e.g. [10].

Practically, instead of computing the on-shell action, one finds the linearized
bulk equations corresponding to an operator of interest and solve the Sturm-
Liouville problem for the resulting system. That is find the values of the 4d
mass of the fluctuation, for which the solution is normalizable.

Quantum numbers Glueballs are classified by the JPC quantum numbers.
Quantum numbers are determined by the representation of the operator, e.g. the
classification of [11]. The quantum numbers of the operators are in turn in a
correlation with the quantum numbers of the bulk fields. The spin of the bulk
field is determined by the representation of the 4d Lorentz group. It can be
shown that any fluctuation of the SUGRA fields can be parameterized in terms
of either 0- (scalar), or 1-form (vector). The only possible spin 2 fluctuation
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is the fluctuation of the metric. This is again a restriction of the gravity limit
of the holographic correspondence, mentioned above. Higher spin states are
encoded in the string excitations, which are infinitely massive in the low-energy
limit.

Parity is a symmetry, which reflects the spatial part of the Minkowski space:
xi → −xi. The properties of the bulk fields under the parity transformation are
determined through the interaction of the bulk fields with probe D3-branes [8].
The interaction of the fields on the D3-brane (Aa

µ, λ
a
α) with the bulk field is

given by the DBI action with Chern-Simons terms. The parity of the bulk fields
is then fixed from the invariance of the DBI action.

KS theory is not invariant under the usual charge conjugation C. However,
C supplemented by the exchange Ai ↔ Bi is a symmetry of the theory. This
symmetry was named I-symmetry. Provided this, the C-numbers of the bulk
fields can be fixed in a similar manner to the parity. The pure gauge N = 1
sector of the Klebanov and Strassler theory does not contain the Ai and Bi

fields. Therefore, for this sector, the C and I quantum numbers coincide.

4 Singlet glueballs

Symmetries KS theory inherits the SU(2) × SU(2) isometries of T 1,1 as
its global symmetry. This is reflected in the spectrum of glueballs, which are
organized in the representations of this group. Here we will only be interested
in the SU(2)× SU(2)-singlet sector of the theory. All the glueball states of the
N = 1 SYM are contained in this sector. For attempts to study the non-singlet
sector see e.g. [12].

The glueballs are also organized in the representations of SUSY. We will
mostly be dealing with the massive representations (multiplets). These multi-
plets are characterized by a half-integer number j, so that the multiplet consists
of the states with the spin |j − 1/2| ⊕ j ⊕ j ⊕ |j + 1/2|. With the exception of
the scalar multiplet j = 0, the multiplets are named by the highest spin state:
vector (j = 1/2), gravitino (j = 1) and graviton (j = 3/2). In what follows we
will ignore the fermionic components of the multiplets.

Graviton multiplet The simplest SUSY multiplet to analyze is the graviton
multiplet, which contains massive spin 2 and spin 1 fields. The spin 2 state is
special as it is produced by the energy-momentum operator Tµν , which is present
in any theory. This is a 2++ state. The corresponding gravity fluctuation is
the transverse traceless fluctuation of the metric along the Minkowski directions
(graviton):

Tµν ←→ δ(ds2) = hµν(x
µ, τ)dxµdxν . (12)

There are no other operators with the same quantum numbers to mix with,
correspondingly, there are no other bulk fields to be excited. The linearized
equations for the graviton are particularly simple. They give the equation of a
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scalar coupled to gravity in a minimal way, that is massless Klein-Gordon equa-
tion in the KS background. The spectrum of this equation can be approximated
by a quadratic fit (n = 1, 2, . . .)

m2
n = 0.290n2 + 0.528n+ 0.318 in units of 3ǫ4/3/(25/3gsMα′) . (13)

It is a known result in SUSY theories that energy-momentum operator Tµν
enters the same supermultiplet as the current JR

µ of the U(1)R symmetry [13].
In the Klebanov-Strassler geometry, the U(1)R symmetry is realized as shifts of
one of the angles (ψ) on T 1,1. One can find that this symmetry is anomalous,
which has a geometric realization [14].

Associated to the U(1)R is JR
µ operator on the gauge theory side. The

associated bulk vector excitation Vµ comes from the following ansatz [4, 7]:

δ(ds2) = Vµdx
µg5 , δF5 = (W ∧ dg5 +W′dτ ∧ g5) ∧ dg5 + . . . (14)

U(1)R current has the quantum numbers 1++ and conformal dimension ∆ =
3. In fact, there is another 1++ linear combination of Vµ and Wµ [7]. One can
find that the true eigenmodes of the system have ∆ = 3 and ∆ = 7, so that one
of them is indeed dual to the U(1)R current, while the other one is dual to a
hybrid operator

O1++

µ =
1

4
Tr {λ, Fαβ}σ

α{λ̄, F β
µ}+Tr {λ, F̃αβ}σ

α{λ̄, F̃ β
µ}+ . . . , (15)

where ellipses stand for the fermionic terms with derivatives and auxiliary fields.
As expected the spectrum of the dual U(1)R vector field coincides with

the one of the graviton (13). In the same units the spectrum of the O1++

µ is
approximated by the fit

m2
n = 0.287n2 + 1.80n+ 2.32 , for O1++

µ . (16)

C-odd sector The next in difficulty is the sector with I odd. First, this
sector contains two massless scalars (P = ±1). The existence of these states was
demonstrated in [15], where it was argued that the pseudoscalar is a Goldstone
mode of the baryon number symmetry U(1)B, spontaneously broken by the
expectation values of the baryonic operators produced in the last step of the
cascade (8). The dual operator of the pseudoscalar is the ∆ = 4 operator:

∂µJ
Bµ

= ImTr (a∗i�ai − b
∗

i�bi) + fermionic terms , (17)

while the scalar operator is the real part of the same expression. Here ai and bi
are the scalar components of the superfields Ai and Bi. As expected, the two
massless states form one CP -extended scalar multiplet and can be described by
a single complex operator.

The operator JB
µ and its superpartners can also produce massive states.

Consider all possible SU(2)× SU(2)-singlet (pseudo-) scalar fluctuations [5]:

δB2 = χ dg5 + ∂µσ dx
µ · g5 , δg13 = δg24 = ψ ; (18)

δC2 = χ̃ dg5 + ∂µσ̃ dx
µ · g5 , (19)
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where the metric is excited along the SU(2)×SU(2) invariant direction specified
by the interior product g1 · g3+ g2 · g4. Notice that (18) describe a scalar, while
(19) – a pseudoscalar excitation.

Analysis of the linearized equations shows that only two of the functions χ,
ψ and σ are independent. As a result there are two mixed excitations producing
the 0+− eigenstates with the dimensions of the dual operators ∆ = 2 and ∆ = 5.
Analysis of the superconformal representations [16] shows that

O0+−

2 = Tr (a∗i ai − b
∗

i bi) , O0+−

5 =
1

2
ReTrD{λ, λ} , (20)

where D is the auxiliary field of the pure gauge N = 1 sector.
For the pseudoscalar fluctuation (19) the functions one finds only one pseu-

doscalar. The 0−− state will be given by the imaginary part of the above
complex operator TrD{λ, λ}.

Numerical analysis gives the following for the spectrum [5] in units of (13):

m2
n = 0.262n2 + 0.130n+ 0.340 for O0+−

2 , (21)

m2
n = 0.277n2 + 1.79n+ 2.17 for O0+−

5 , (22)

m2
n = 0.289n2 + 1.15n+ 0.996 for O0−−

, (23)

The I-odd sector also contains 7 vectors, 4 of which belong to the parity
even sector and 3 to parity odd [6]. P -even states can be derived from the
following bulk fluctuations, written in terms of the SU(2) × SU(2)-invariant
forms on T 1,1,

δB2 = J ∧ dτ , δC2 = ∗4d4D+C ∧ g5 , (24)

δF5 = (1 + ∗10)
(

F ∧ dτ ∧ ω12 ∧ g
5 +G ∧ dτ ∧ ω34 ∧ g

5 + (25)

+ (d4P ∧ ω12 + d4Q ∧ ω34) ∧ g
5 + d4R ∧ dτ ∧ ω13

)

, (26)

where ∗4 denotes the 4d Hodge operator, d4 is the exterior derivative acting in
Minkowski space. Bold face is used to denote 1-forms.

Linearized equations can be partially diagonalized analytically separating
two eigenvectors and a system of 2 coupled equations. The eigenvalues of the
latter can be found numerically and correspond to the 1+− states dual to the
∆ = 3 JB

µ operator and ∆ = 6 superpartner of O0+−

5 . Two remaining eigenvec-
tors belong to two ”gravitino” multiplets, which contain parity even and odd
components of ∆ = 5 and ∆ = 6 operators:

O(5)
µ = TrFµνλσ

ν λ̄+ . . . , O(6)
µν = TrFµνFρσF

ρσ + . . . , (27)

where ellipses stand for higher order fermionic terms and terms with auxiliary
fields. Numerical calculation of the spectrum of the gravitino multiplets gives [6]

m2
n = 0.287n2 + 1.02n+ 0.633 , m2

n = 0.288n2 + 1.31n+ 1.44 . (28)
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Scalar multiplets The I-even scalar sector is the most difficult one to study.
The reason is a heavy mixing among different states. The original study of
the spectrum of the 0++ states was performed in [3]. It was shown that there
are 7 independent excitations of the bulk fields, which can be parameterized
according to table 1.

Mode 10d Fluctuation ∆ R

Φ δΦ 4 0
s δB2: ω2 ∝ g1 ∧ g2 + g3 ∧ g4 4 0
y δds2: (g1)2 + (g2)2 − (g3)2 − (g4)2 3 ±2
N2 δ(C2 + iB2) 3 2
f δds2: − 10

9 (g5)2 + 2ds2T 1,1 6 0
N1 δ(C2 + iB2) 7 −2
q δds2: −5ds25 + 3ds2T 1,1 8 0

Table 1: I-even scalar fluctuations of the KS background found in [3]. The dimension
∆ of the dual operator and the R-charge of the mode shown.

The system of 7 linearized equations obtained in [3] is strongly entangled. A
tremendous breakthrough of [3] was the computation of the collective spectrum
of all 7 0++ particles. Naive attempts to identify any single tower of states in
the collective spectrum may lead to wrong results. One may observe from the
study of other sectors, that the spectrum of any individual tower is excellently
fit by a quadratic formula. but for the 0++ spectra, one would always fail to fit
the lightest states. Perhaps, there is a deviation from the quadratic dependence
at least for some eigenstates.

In [7] it was shown how SUSY can help to resolve the problems (at least par-
tially). It turns out that one of the 1++ states is degenerate with one of the 0++

states. Together they form a massive vector supermultiplet. Thus, one out of 7
towers can be extracted from the collective spectrum. The question is whether
the remaining 6 towers can be disentangled. This question was addressed in [17],
where the pseudoscalar 0−+ fluctuations of the metric were investigated. It was
shown that the pseudoscalar equations describe 6 independent modes necessary
to complete 6 massive scalar multiplets with the remaining 0++. The spectrum
of the system is to be compared with [3].

5 Summary

We have summarized the results of the calculation of the glueball spectrum in
the SU(2)×SU(2)-singlet sector of the KS theory. Since one of our motivations
was a prediction of the spectrum of the pure glue N = 1 supersymmetric Yang-
Mills theory, let us discuss the result from this perspective. We remind that the
gravity approximation only allows to compute the spectrum of low spin states.

The total spectrum of the singlet sector is shown on figure 1(left). To obtain
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Figure 1: Left: SU(2)×SU(2)-singlet (bosonic) spectrum (m2) of the Klebanov-
Strassler theory from holography in units (13). 2 columns on the left show the
collective spectrum of 6 towers of the scalar multiplets. Right: Conjectured
(bosonic) spectrum (m) of the N = 1 SYM in units of the 2++ mass. Only the
states with spin ≤ 1 and the 2++ can be computed in the gravity approximation.
The collective spectrum of 6 towers of the scalar multiplets is shown in the −+
box (empty red boxes, no labels). Lattice prediction for certain states are shown
(empty blue boxes, blue labels).

the spectrum of the N = 1 SYM theory, we need to throw away the states
that contain the Ai and Bi fields. The adjusted spectrum is presented in fig-
ure 1(right), where we have left only the lightest states from each multiplet
tower (with the exception of the scalar towers, for which we cannot identify the
lightest states). All the masses are given in units of the 2++ mass. We have
also included the positions of the glueballs in the pure glue non-supersymmetric
SU(3) Yang-Mills theory from the lattice calculation [1].

Comparing with the lattice results, one can see a nice agreement for the 1+−

and 1−− states. The result for the 0+− state looks tantalizing, but one should
bear in mind that in the SUSY theory the 0+− contains fermions (20), while
in the non-SUSY case the underlying operator contains higher derivatives and
should not be visible in the gravity approximation.

The scalar sector of the spectrum is still under investigation. Although the
mass eigenvalues are known, there is still a large ambiguity in the assignment of
the operators to the eigenmodes. There are 6 scalar supermultiplets for which
only collective spectrum is shown. Hopefully SUSY will help to identify indi-
vidual towers from the collective spectrum. It would be interesting to compare
the lattice result for the 0++ and 0−+ states with the holographic prediction.
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